新書推薦:
《
罗马政治观念中的自由
》
售價:NT$
230.0
《
中国王朝内争实录:宠位厮杀
》
售價:NT$
281.0
《
凡事发生皆有利于我(这是一本读了之后会让人运气变好的书”治愈无数读者的心理自助经典)
》
售價:NT$
203.0
《
未来特工局
》
售價:NT$
254.0
《
高术莫用(十周年纪念版 逝去的武林续篇 薛颠传世之作 武学尊师李仲轩家世 凸显京津地区一支世家的百年沉浮)
》
售價:NT$
250.0
《
英国简史(刘金源教授作品)
》
售價:NT$
449.0
《
便宜货:廉价商品与美国消费社会的形成
》
售價:NT$
352.0
《
读书是一辈子的事(2024年新版)
》
售價:NT$
352.0
|
內容簡介: |
本书试图用较少的篇幅描述偏微分方程的几种数值方法.主要内容包括:Sobolev空间初步,椭圆边值问题的变分问题,椭圆问题的有限差分方法,抛物型方程的有限差分方法,双曲型方程的有限差分方法,椭圆型方程的有限元方法,抛物及双曲问题的有限元方法,椭圆型方程的混合有限元方法,谱方法等.本书内容丰富,深入浅出,尽可能地用简单的方法来描述一些理论结果,并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求,全面、客观地评价了各种数值计算方法,并列举了一些数值计算的例子,阐述了许多新的学术观点,具有较大的学术价值。
|
目錄:
|
《信息与计算科学丛书》序
前言
第1 章引言
1.1 预备知识
1.1.1 符号说明
1.1.2 泛函基础知识
1.2 Sobolev 空间初步
1.2.1 广义导数
1.2.2 Sobolev 空间的定义
1.2.3 嵌入定理
1.2.4 迹定理
1.2.5 等价模定理
1.3 习题
第2 章椭圆型方程边值问题
2.1 Lax—Milgram 定理
2.2 变分形式及解的存在唯一性
2.2.1 Dirichlet 问题
2.2.2 Neumann 边值问题
2.2.3 混合边值问题
2.2.4 双调和方程
2.3 正则性
2.4 习题
第3 章椭圆型方程的有限差分方法
3.1 有限差分法的基础
3.1.1 网格剖分
3.1.2 有限差分近似的基本概念
3.2 一维两点边值问题的有限差分方法
3.3 二维椭圆型方程的有限差分方法
3.3.1 Poisson 方程的Dirichlet 边值问题
3.3.2 Poisson 方程的Neumann 边值问题
3.3.3 一般的二阶线性椭圆问题的差分格式
3.3.4 双调和问题的差分格式
3.4 差分方程解的唯一性和收敛性
3.4.1 差分方程解的存在唯一性
3.4.2 差分方程解的收敛性
3.5 习题
第4 章抛物型方程的有限差分方法
4.1 一维抛物型方程的有限差分格式
4.1.1 一维常系数抛物型方程的Dirichlet 初边值问题
4.1.2 一维常系数抛物型方程的混合边值问题
4.2 差分格式的稳定性和收敛性
4.2.1 基本概念
4.2.2 判别稳定性的直接法
4.2.3 判别稳定性的分离变量法
4.2.4 稳定性与收敛性的关系
4.3 二维抛物型方程的有限差分格式
4.3.1 二维古典差分格式
4.3.2 交替方程隐式差分格式
4.4 习题
第5 章双曲型方程的有限差分法
5.1 一维一阶线性双曲型方程的差分格式
5.1.1 双曲型方程的初值问题
5.1.2 双曲型方程的初边值问题
5.2 一维二阶线性双曲型方程的差分方法
5.2.1 显示差分格式
5.2.2 隐式差分格式
5.2.3 初边值条件的离散
5.3 二维二阶双曲型方程的有限差分格式
5.3.1 显式差分格式
5.3.2 交替方向隐式差分格式
5.4 习题
第6 章椭圆型方程边值问题的有限元法
6.1 两点边值问题的有限元法
6.1.1 Galerkin 方法与Ritz 方法
6.1.2 两点边值问题的线性有限元方法
目录¢ vii ¢
6.1.3 两点边值问题的线性有限元解的误差估计
6.2 两点边值问题的高次有限元方法
6.2.1 二次元
6.2.2 三次元
6.3 二维椭圆问题的有限元方法
6.3.1 二维椭圆问题
6.3.2 二维椭圆问题的有限元逼近格式
6.3.3 数值例子
6.4 习题
第7 章抛物及双曲方程的有限元方法
7.1 抛物型方程的有限元方法
7.1.1 半离散有限元逼近
7.1.2 全离散有限元逼近
7.2 双曲型方程的有限元方法
7.2.1 半离散有限元逼近
7.2.2 全离散有限元逼近
7.3 习题
第8 章椭圆问题的混合有限元方法
8.1 混合有限元基本理论
8.1.1 基本概念
8.1.2 混合变分形式
8.1.3 Babuska—Brezzi 理论
8.2 二阶椭圆方程的混合有限元方法
8.2.1 线性椭圆方程的混合有限元方法
8.2.2 拟线性椭圆方程的混合有限元方法
8.2.3 线性椭圆方程的超收敛分析
8.2.4 线性椭圆方程的后验误差估计
8.3 习题
第9 章谱方法
9.1 正交多项式
9.1.1 正交多项式的定义
9.1.2 Gauss 型求积公式
9.2 Jacobi 正交多项式
9.3 Legendre 正交多项式
9.4 Chebyshev 正交多项式
9.5 谱方法的一般形式
9.5.1 变分形式的导出
9.5.2 谱逼近的一般形式
9.6 Galerkin 方法
9.6.1 数值格式的导出
9.6.2 稳定性和收敛性
9.7 配置法
9.7.1 数值格式的导出
9.7.2 稳定性和收敛性
9.8 Volterra 型积分方程的谱配置法
9.8.1 Volterra 积分方程的Legendre 谱配置法
9.8.2 弱奇性Volterra 积分方程的Jacobi 谱配置法
9.8.3 Volterra 积分微分方程的Legendre 谱配置法
9.9 习题
参考文献
索引
《信息与计算科学丛书》已出版书目
|
|