登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』平行因子分析理论及其在通信和信号处理中的应用

書城自編碼: 2446247
分類: 簡體書→大陸圖書→工業技術電子/通信
作者: 张小飞 等 著
國際書號(ISBN): 9787121237355
出版社: 电子工业出版社
出版日期: 2014-08-01
版次: 1 印次: 1
頁數/字數: 236/366000
書度/開本: 16开 釘裝: 平装

售價:NT$ 351

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
中国王朝内争实录(套装全4册):从未见过的王朝内争编著史
《 中国王朝内争实录(套装全4册):从未见过的王朝内争编著史 》

售價:NT$ 1112.0
半导体纳米器件:物理、技术和应用
《 半导体纳米器件:物理、技术和应用 》

售價:NT$ 806.0
创客精选项目设计与制作 第2版   刘笑笑 颜志勇 严国陶
《 创客精选项目设计与制作 第2版 刘笑笑 颜志勇 严国陶 》

售價:NT$ 281.0
佛山华家班粤菜传承 华家班59位大厨 102道粤菜 图文并茂 菜式制作视频 粤菜故事技法 佛山传统文化 广东科技
《 佛山华家班粤菜传承 华家班59位大厨 102道粤菜 图文并茂 菜式制作视频 粤菜故事技法 佛山传统文化 广东科技 》

售價:NT$ 1010.0
武人琴音(十周年纪念版 逝去的武林系列收官之作 形意拳一门三代:尚云祥、韩伯言、韩瑜的人生故事 凸显百年武人命运)
《 武人琴音(十周年纪念版 逝去的武林系列收官之作 形意拳一门三代:尚云祥、韩伯言、韩瑜的人生故事 凸显百年武人命运) 》

售價:NT$ 199.0
剑桥斯堪的纳维亚戏剧史(剑桥世界戏剧史译丛)
《 剑桥斯堪的纳维亚戏剧史(剑桥世界戏剧史译丛) 》

售價:NT$ 704.0
禅心与箭术:过松弛而有力的生活(乔布斯精神导师、世界禅者——铃木大拙荐)
《 禅心与箭术:过松弛而有力的生活(乔布斯精神导师、世界禅者——铃木大拙荐) 》

售價:NT$ 301.0
先进电磁屏蔽材料——基础、性能与应用
《 先进电磁屏蔽材料——基础、性能与应用 》

售價:NT$ 1010.0

建議一齊購買:

+

NT$ 1071
《 检测、估计和调制理论——卷I:检测、估计和滤波理论 (第2版) 》
+

NT$ 711
《 现代信号处理的若干新方法 》
+

NT$ 711
《 复值数据统计信号处理-失真和非源信号理论 》
+

NT$ 675
《 雷达信号处理的信息几何方法 》
內容簡介:
本书介绍了平行因子分析理论及其在通信和信号处理中的应用。平行因子(Parallel Factor,PARAFAC)分解属于多线性代数范畴。平行因子分析也称三线性多线性分解。一般而言,矩阵分解(双线性分解)不是唯一的,除非施加约束性条件(正交性、Vandermonde、Toeplitz 和恒模特性等)。PARAFAC可以看成三维或高维数据阵的低秩分解,PARAFAC模型的本质特征就是其唯一性。在合适的条件下,PARAFAC模型本质上是唯一的。平行因子是一种多维数据处理方法,它充分利用信号的代数性质和分集特性对接收信号进行处理,并通过多维数据的拟合得到信号处理中需要的各种信息。近年来,基于PARAFAC的信号处理方法因其良好的性能而备受关注,并已成为通信信号处理中一种新的研究手段。本书详细介绍PARAFAC理论数学基础、k-秩、可辨识性、PARAFAC分解算法、PARAFAC分解的CRB分析、自适应PARAFAC分解、大规模PARAFAC分解、扩展PARAFAC 模型、平行因子压缩感知框架和PARAFAC在通信和信号处理中的应用。
關於作者:
张小飞,1977年生,2002年获得武汉大学工学硕士,2005获得南京航空航天大学通信与信息系统专业博士学位,2010年破格晋升为南京航空航天大学教授。
目錄
第1章 绪论 1
1.1 多维矩阵低秩分解 1
1.2 平行因子模型研究现状 2
1.2.1 平行因子模型在通信和信号处理中的应用 2
1.2.2 PARAFAC分解算法改进 3
1.2.3 PARAFAC模型的扩展 3
1.2.4 本课题组的工作 4
1.3 本书的安排 4
参考文献 5
第2章 数学基础 13
2.1 矩阵代数的相关知识 13
2.1.1 特征值与特征向量 13
2.1.2 广义特征值与广义特征向量 13
2.1.3 矩阵的奇异值分解 14
2.1.4 Toeplitz矩阵 14
2.1.5 Hankel矩阵 15
2.1.6 Vandermonde矩阵 15
2.1.7 Hermitian矩阵 15
2.1.8 Kronecker积 16
2.1.9 Khatri-Rao积 17
2.1.10 Hadamard积 17
2.1.11 向量化 18
2.1.12 外积 18
2.2 张量代数基础 19
2.2.1 张量代数定义和表示 19
2.2.2 张量的特殊形式 22
2.3 PARAFAC 模型 23
2.3.1 PARAFAC 模型表示 23
2.3.2 PARAFAC模型的其他表示形式 24
2.4 PARAFAC分解唯一性 27
2.4.1 矩阵本质相等 27
2.4.2 二维矩阵低秩分解不唯一性 29
2.4.3 PARAFAC分解唯一性 29
2.5 本章小结 30
参考文献 30
第3章 PARAFAC基本理论 31
3.1 PARAFAC模型 31
3.1.1 三线性模型 31
3.1.2 四线性模型或多线性模型 32
3.2 k-秩 33
3.3 可辨识性 34
3.4 PARAFAC分解 35
3.4.1 三线性交替最小二乘 35
3.4.2 平行因子的快速算法 36
3.4.3 四线性分解和四线性交替最小二乘 39
3.4.4 基于正交约束PARAFAC分解 41
3.4.5 结构约束PARAFAC分解 43
3.5 PARAFAC分解的CRB分析 50
3.5.1 三线性分解的CRB求解 51
3.5.2 约束CRB的求解算法 55
3.5.3 “首行已知”约束下三线性分解的CRB求解 55
3.5.4 恒模约束下三线性分解的CRB求解 57
3.5.5 有限字符约束下三线性分解的CRB求解 58
3.5.6 四线性分解的CRB求解 59
3.6 自适应PARAFAC分解 62
3.6.1 多线性代数基础 62
3.6.2 问题阐述 63
3.6.3 基本思想简介 64
3.6.4 窗的选取 66
3.6.5 PARAFAC-SDT算法 67
3.6.6 PARAFAC-RLST算法 71
3.6.7 初始化 74
3.7 大规模PARAFAC分解 75
3.7.1 张量符号与基本模型 75
3.7.2 动态张量分解 77
3.7.3 网格PARAFAC 80
3.8 本章小结 83
参考文献 83
第4章 扩展PARAFAC模型 86
4.1 PARALIND模型 86
4.1.1 PARALIND模型和分解 86
4.1.2 PARALIND 模型的唯一性 87
4.2 块状PARAFAC 88
4.2.1 块状PARAFAC模型 88
4.2.2 块状PARAFAC分解 90
4.3 PARAFAC2 91
4.3.1 PARAFAC2模型 91
4.3.2 PARAFAC2分解 92
4.4 PARATUCK2 92
4.4.1 PARATUCK2 模型 92
4.4.2 PARATUCK2分解 93
4.5 TUCKER 93
4.5.1 TUCKER 模型 93
4.5.2 TUCKER分解 95
4.6 本章小结 95
参考文献 95
第5章 PARAFAC压缩感知模型 98
5.1 压缩感知基本原理 98
5.1.1 压缩感知的理论框架 99
5.1.2 矩阵秩最小化理论 101
5.2 PARAFAC压缩感知理论 102
5.2.1 张量分解的基础 102
5.2.2 PARAFAC压缩感知框架 103
5.2.3 平行因子模型填充 108
5.3 本章小结 109
参考文献 109
第6章 三线性分解在通信和信号处理中的应用 112
6.1 多天线OFDM系中一种基于三线性分解盲载波频偏估计算法 112
6.1.1 数据模型 112
6.1.2 算法原理 113
6.1.3 仿真结果 116
6.2 基于三线性分解的任意矢量传感器阵的二维波达方向估计 120
6.2.1 数据模型 121
6.2.2 三线性分解 122
6.2.3 可辨识性和唯一性 124
6.2.4 算法原理 124
6.2.5 仿真结果 126
6.2.6 小结 130
6.3 阵列天线MC-CDMA系统中基于平行因子技术的盲多用户检测算法 131
6.3.1 数据模型 131
6.3.2 阵列天线MC-CDMA系统中的盲多用户检测算法 132
6.3.3 仿真结果 134
6.4 单基地MIMO雷达中基于自适应PARAFAC-RLST的DOA跟踪算法 137
6.4.1 数据模型 137
6.4.2 利用自适应PARAFAC-RLST进行DOA跟踪 137
6.4.3 复杂度分析 140
6.4.4 仿真结果 140
6.5 基于非圆PARAFAC任意声矢量阵列下2D-DOA估计 143
6.5.1 数据模型 143
6.5.2 基于NC-PARAFAC的2D-DOA估计算法 144
6.5.3 CRB 148
6.5.4 仿真结果 152
参考文献 155
第7章 四线性分解在通信和信号处理中的应用 157
7.1 基于四线性分解的均匀面阵的角度和频率联合估计 157
7.1.1 数据模型 157
7.1.2 平行因子四线性模型形成 159
7.1.3 算法描述 160
7.1.4 仿真结果 163
7.2 基于四线性分解的双基地MIMO雷达的角度和多普勒频率联合估计 165
7.2.1 双基地MIMO雷达时空数据模型 165
7.2.2 基于PARAFAC四线性分解的联合估计算法 167
7.2.3 仿真结果 170
参考文献 173
第8章 PARALIND分解在通信和信号处理中的应用 174
8.1 非同步CDMA系统的PARALIND多用户检测 174
8.1.1 数据模型 175
8.1.2 异步CDMA系统中基于PARALIND的盲空时多用户检测 177
8.1.3 仿真结果 179
8.2 多径下CDMA系统的PARALIND多用户检测 182
8.2.1 数据模型 182
8.2.2 盲PARALIND多用户检测 184
8.2.3 仿真结果 185
8.3 MIMO-OFDM系统中基于PARALIND模型的盲信号检测 188
8.3.1 数据模型 188
8.3.2 基于PARALIND的盲符号检测算法 189
8.3.3 仿真结果 191
8.4 声矢量传感器阵列的基于PARALIND分解相干二维DOA估计算法 194
8.4.1 数据模型 195
8.4.2 相干二维角度估计 195
8.4.3 仿真结果 199
参考文献 202
第9章 PARAFAC压缩感知理论在通信和信号处理中的应用 204
9.1 基于PARAFAC 压缩感知模型阵列信号检测 204
9.1.1 数据模型 204
9.1.2 利用三线性模型压缩感知的信号检测算法 205
9.1.3 仿真结果 207
9.2 MIMO雷达中基于压缩感知平行因子分析的联合角度与多普勒频率估计 208
9.2.1 数据模型 208
9.2.2 联合角度与多普勒频率估计 209
9.2.3 性能分析 214
9.2.4 仿真结果 215
9.3 基于PARAFAC填充的面阵DOA估计 219
9.3.1 数据模型 219
9.3.2 利用PARAFAC填充的DOA估计 220
9.3.3 仿真结果 222
参考文献 224

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.