登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』高等几何(第二版)(英文版)

書城自編碼: 2268148
分類: 簡體書→大陸圖書→自然科學數學
作者: Xinghe Zhou,Mingsheng Yang 著
國際書號(ISBN): 9787030387981
出版社: 科学出版社
出版日期: 2014-01-01


書度/開本: 大16开

售價:NT$ 531

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
推拿纲目
《 推拿纲目 》

售價:NT$ 1836.0
精致考古--山东大学实验室考古项目论文集(一)
《 精致考古--山东大学实验室考古项目论文集(一) 》

售價:NT$ 1112.0
从天下到世界——国际法与晚清中国的主权意识
《 从天下到世界——国际法与晚清中国的主权意识 》

售價:NT$ 347.0
血色帝国:近代英国社会与美洲移民
《 血色帝国:近代英国社会与美洲移民 》

售價:NT$ 265.0
海外中国研究·王羲之:六朝贵族的世界(艺术系列)
《 海外中国研究·王羲之:六朝贵族的世界(艺术系列) 》

售價:NT$ 811.0
唐宋绘画史  全彩插图版
《 唐宋绘画史 全彩插图版 》

售價:NT$ 449.0
“御容”与真相:近代中国视觉文化转型(1840-1920)
《 “御容”与真相:近代中国视觉文化转型(1840-1920) 》

售價:NT$ 505.0
鸣沙丛书·大风起兮:地方视野和政治变迁中的“五四”(1911~1927)
《 鸣沙丛书·大风起兮:地方视野和政治变迁中的“五四”(1911~1927) 》

售價:NT$ 454.0

建議一齊購買:

+

NT$ 739
《 变分法基础(第3版) 》
+

NT$ 801
《 有限元方法基础教程(国际单位制版)(第五版) 》
+

NT$ 621
《 概率论基础教程(原书第9版) 》
編輯推薦:
由Xinghe Zhou和Mingsheng Yang编著的这本《Higher GeometrySECOND EDITION》的英文简介如下:
This book provides an introduction to plane projective geometry and affine
geometry. Its main contents involve projective plane, projective
transformations, transformation groups and geometry, the projective and affine
theories of conics, the historic development track of geometry and so on. The
book is easy both to teach and to learn, which is typical of its well-knit
system, refined content and colorful picture
目錄
Preface to the Second Edition
Preface to the First Edition
Chapter 1 Projective Planes
1.1 Preliminaries
1.1.1 Transformations
1.1.2 Orthogonal Transformations
1.1.3 Similarity Transformations
1.1.4 Affine Transformations
Exercises 1.1
1.2 Extended Planes
1.2.1 Central Projections
1.2.2 Elements at Infinity
1.2.3 Extended Planes
1.2.4 The Basic Properties of Extended Lines and Extended Planes
Exercises 1.2
1.3 The Homogeneous Coordinates in an Extended Plane
1.3.1 The Equivalent Classes of n-dimensional Real Vectors
1.3.2 Homogeneous Point Coordinates
1.3.3 The Homogeneous Coordinate Equation of a Line
1.3.4 Homogeneous Line Coordinates
1.3.5 Some Basic Conclusions on Homogeneous Coordinates
1.3.6 Homogeneous Cartesian Coordinate System in an Extended Plane
Exercises 1.3
1.4 Projective Planes
1.4.1 Real Projective Planes(Two-dimensional Projective Space)
1.4.2 The Models of a Real Projective Plane
1.4.3 Projective Coordinate Transformations
1.4.4 Real Projective Lines(One-dimensional Real Projective Space)
1.4.5 Real-Complex Projective Planes
1.4.6 Basic Projective Figures and Projective Properties of Figures
Exercises 1.4
1.5 The Plane Duality Principle
1.5.1 The Plane Duality Principle
1.5.2 The Principle of Algebraic Duality
Exercises 1.5
1.6 Desargues Two-Triangle Theorem
1.6.1 Desargues Two-Triangle Theorem
1.6.2 Applications of Desargues Two-rIYiangle Theorem
Exercises 1.6
Chapter 2 Projective Transformations
2.1 The Cross Ratio
2.1.1 The Cross Ratio of Collinear Four Points
2.1.2 The Cross Ratio of Concurrent Four Lines in a Projective Plane
Exercises 2.1
2.2 Harmonic Properties of Complete 4-points and Complete 4-lines
2.2.1 Harmonic Properties of Complete 4-points and Complete 4-lines
2.2.2 The Applications of Harmonic Properties of Complete 4-points and Complete 4-lines
Exercises 2.2
2.3 The Projective Correspondences Between One-dimensional Basic Figures
2.3.1 The Perspectivities
2.3.2 The Projective Correspondences
2.3.3 The Algebraic Definition of Projective Correspondence
Exercises 2.3
2.4 One-dimensional Projective Transformations
2.4.1 One-dimensional Projective Transformations
2.4.2 The Classification of One-dimensional Projective rlyansformations
Exercises 2.4
2.5 The Involutions of One-dimensional Basic Figures
2.5.1 The Definition of Involutions
2.5.2 The Conditions to Determine Involutions
2.5.3 The Invariant Elements of Involutions and Their Properties
2.5.4 Desargues Involution Theorem
Exercises 2.5
2.6 Two-dimensional Projective Transformations
2.6.1 Two-dimensional Projective Correspondences
2.6.2 Two-dimensional Projective Transformations
Exercises 2.6
Chapter 3 Transformation Groups and Geometry
3.1 Projective Affine Planes
3.1.1 Projective Affine Planes
3.1.2 Projective Afline Transformations and Affme Transformations
3.1.3 Projective Similarity Transformations and Similarity Transformations
3.1.4 Projective Orthogonal Transformations and Orthogonal Transformations
Exercises 3.1
3.2 Some Transformation Groups of Plane
3.2.1 Groups and Transformation Groups
3.2.2 Some Transformation Groups of Plane
Exercises 3.2
3.3 Transformation Groups and Geometry
3.3.1 Klein''s Thought of Transformation Group
3.3.2 The Comparison of Several Plane Geometries
Exercises 3.3
Chapter 4 Theory of Conics
4.1 Definitions and Basic Properties of Conics
4.1.1 Algebraic Definition of Conics
4.1.2 Projection Definition of Conics
4.1.3 Tangent Lines of a Point Conic and Tangent Points of a Line Conic
4.1.4 The Geometric Unity of Point Conics and Line Conics
4.1.5 Pencil of Point Conics
Exercises 4.1
4.2 Theorems of Pascal and Brianchon
4.2.1 Theorems of Pascal and Brianchon
4.2.2 Special Cases of Pascal''s Theorem
4.2.3 Applications of Pascal''s Theorem and Brianchon''s Theorem
Exercises 4.2
4.3 Polar Transformations
4.3.1 Poles and Polar Lines
4.3.2 Polar Transformations
Exercises 4.3
*4.4 Projective Transformations of a Quadratic Point Range
4.4.1 Projective Correspondences of a Quadratic Range of Points
4.4.2 Projective Transformations of a Quadratic Range of Points
4.4.3 Involutions of a Quadratic Range of Points
Exercises 4.4
4.5 Projective Classifications of Conics
4.5.1 Singular Points of a Point Conic
4.5.2 Projective Classifications of Point Conics
Exercises 4.5
4.6 Affine Theory of Conics
4.6.1 The Relation of a Point Conic and the Infinite Line
4.6.2 The Center of a Point Conic
4.6.3 Diameter and Conjugate Diameter of a Conic
4.6.4 Asymptotes of a Central Point Conic
Exercises 4.6
4.7 Affine Classifications of Conics
4.7.1 Projective Affine Classifications of Non-degenerate Point Conics
4.7.2 Projective Affine Classifications of Degenerate Point Conics
Exercises 4.7
Chapter 5 The Historic Developmental Track of Geometry
5.1 Euclidean Geometry
5.2 Pappus and Projective geometry
5.3 Descartes and Analytic Geometry
5.4 The Fifth Axiom and Non-Eucildean Geometry
5.5 Gauss, Riemaun and Differential Geometry
5.6 Cantor, Poincare and Topology
5.7 Hilbert and His Foundations of Geometry
Bibliographies
Subject Index

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.