登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2025年01月出版新書

2024年12月出版新書

2024年11月出版新書

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

『英文書』Modeling and Reasoning with Bayesian Networks(ISBN=9780521884389)

書城自編碼: 2213959
分類: 簡體書→原版英文書→科学与技术 Science & Tech
作者: 本社 编著
國際書號(ISBN): 9780521884389
出版社: Cambridge University
出版日期: 2012-01-01
版次: 1 印次: 1
頁數/字數: 548/
書度/開本: 16开 釘裝: 精装

售價:NT$ 4959

我要買

share:

** 我創建的書架 **
未登入.



內容簡介:
A thorough introduction to the formal foundations and
practical applications of Bayesian networks. It provides an
extensive discussion of techniques for building Bayesian networks
that model real-world situations, including techniques for
synthesizing models from design, learning models from data, and
debugging models using sensitivity analysis. It also treats exact
and approximate inference algorithms at both theoretical and
practical levels. The treatment of exact algorithms covers the main
inference paradigms based on elimination and conditioning and
includes advanced methods for compiling Bayesian networks,
time-space tradeoffs, and exploiting local structure of massively
connected networks. The treatment of approximate algorithms covers
the main inference paradigms based on sampling and optimization and
includes influential algorithms such as importance sampling, MCMC,
and belief propagation. The author assumes very little background
on the covered subjects, supplying in-depth discussions for
theoretically inclined readers and enough practical details to
provide an algorithmic cookbook for the system developer.
目錄
1. Introduction
2. Propositional logic
3. Probability calculus
4. Bayesian networks
5. Building Bayesian networks
6. Inference by variable elimination
7. Inference by factor elimination
8. Inference by conditioning
9. Models for graph decomposition
10. Most likely instantiations
11. The complexity of probabilistic inference
12. Compiling Bayesian networks
13. Inference with local structure
14. Approximate inference by belief propagation
15. Approximate inference by stochastic sampling
16. Sensitivity analysis
17. Learning: the maximum likelihood approach
18. Learning: the Bayesian approach
Appendix A: notation
Appendix B: concepts from information theory
Appendix C: fixed point iterative methods
Appendix D: constrained optimization

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2025 (香港)大書城有限公司 All Rights Reserved.