登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』机器学习基础教程

書城自編碼: 2171029
分類: 簡體書→大陸圖書→計算機/網絡计算机理论
作者: [英]罗杰斯
國際書號(ISBN): 9787111407027
出版社: 机械工业出版社
出版日期: 2013-12-01
版次: 1 印次: 1
頁數/字數: 190/
書度/開本: 16开 釘裝: 平装

售價:NT$ 419

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
地下(村上春树沙林毒气事件的长篇纪实)
《 地下(村上春树沙林毒气事件的长篇纪实) 》

售價:NT$ 332.0
偿还:债务与财富的阴暗面
《 偿还:债务与财富的阴暗面 》

售價:NT$ 347.0
清华大学藏战国竹简校释(壹):《命训》诸篇
《 清华大学藏战国竹简校释(壹):《命训》诸篇 》

售價:NT$ 408.0
封建社会农民战争问题导论(光启文库)
《 封建社会农民战争问题导论(光启文库) 》

售價:NT$ 296.0
虚弱的反攻:开禧北伐
《 虚弱的反攻:开禧北伐 》

售價:NT$ 429.0
泰山:一种中国信仰专论(法国汉学经典译丛)
《 泰山:一种中国信仰专论(法国汉学经典译丛) 》

售價:NT$ 380.0
花外集斠箋
《 花外集斠箋 》

售價:NT$ 704.0
有兽焉.8
《 有兽焉.8 》

售價:NT$ 305.0

建議一齊購買:

+

NT$ 441
《 机器学习系统设计 》
+

NT$ 531
《 机器学习导论(原书第2版) 》
+

NT$ 642
《 机器学习实战【利用Python透析主流机器学习算法,配合日常用例,强劲实战导向,程序员人手必备!】 》
內容簡介:
本书介绍机器学习技术及应用的主要算法,重点讲述理解主流的机器学习算法所需的核心数学和统计知识。书中介绍的算法涵盖机器学习的主要问题:分类、聚类和投影。由于本书是机器学习基础课程的教材,所以尽量减少了数学难度,仅对一小部分重要算法给出详细的描述和推导,而对大部分算法仅给出简单介绍,目的在于使学生打好基础,增强信心和兴趣,鼓励他们进一步学习该领域的高级主题或从事相关研究工作。
本书是机器学习导论课程教材,适合作为计算机、自动化及相关专业高年级本科生或研究生的教材,也可供研究人员和工程技术人员参考。
目錄
出版者的话
译者序
前言
第1章 线性建模:最小二乘法
 1.1 线性建模
1.1.1 定义模型
1.1.2 模型假设
1.1.3 定义什么是好的模型
1.1.4 最小二乘解:一个有效的例子
1.1.5 有效的例子
1.1.6 奥运会数据的最小二乘拟合
1.1.7 小结
 1.2 预测
1.2.1 第二个奥运会数据集
1.2.2 小结
 1.3 向量矩阵符号
1.3.1 例子
1.3.2 数值的例子
1.3.3 预测
1.3.4 小结
 1.4 线性模型的非线性响应
 1.5 泛化与过拟合
1.5.1 验证数据
1.5.2 交叉验证
1.5.3 K折交叉验证的计算缩放
 1.6 正则化最小二乘法
 1.7 练习
 其他阅读材料
第2章 线性建模:最大似然方法
 2.1 误差作为噪声
 2.2 随机变量和概率
2.2.1 随机变量
2.2.2 概率和概率分布
2.2.3 概率的加法
2.2.4 条件概率
2.2.5 联合概率
2.2.6 边缘化
2.2.7 贝叶斯规则介绍
2.2.8 期望值
 2.3 常见的离散分布
2.3.1 伯努利分布
2.3.2 二项分布
2.3.3 多项分布
 2.4 连续型随机变量概率密度函数
 2.5 常见的连续概率密度函数
2.5.1 均匀密度函数
2.5.2 β密度函数
2.5.3 高斯密度函数
2.5.4 多元高斯
2.5.5 小结
 2.6 产生式的考虑(续)
 2.7 似然估计
2.7.1 数据集的似然值
2.7.2 最大似然
2.7.3 最大似然解的特点
2.7.4 最大似然法适用于复杂模型
 2.8 偏差方差平衡问题
 2.9 噪声对参数估计的影响
2.9.1 参数估计的不确定性
2.9.2 与实验数据比较
2.9.3 模型参数的变异性奥运会数据
 2.10 预测值的变异性
2.10.1 预测值的变异性一个例子
2.10.2 估计值的期望值
2.10.3 小结
 2.11 练习
 其他阅读材料
第3章 机器学习的贝叶斯方法
 3.1 硬币游戏
3.1.1 计算正面朝上的次数
3.1.2 贝叶斯方法
 3.2 精确的后验
 3.3 三个场景
3.3.1 没有先验知识
3.3.2 公平的投币
3.3.3 有偏的投币
3.3.4 三个场景总结
3.3.5 增加更多的数据
 3.4 边缘似然估计
 3.5 超参数
 3.6 图模型
 3.7 奥运会100米数据的贝叶斯处理实例
3.7.1 模型
3.7.2 似然估计
3.7.3 先验概率
3.7.4 后验概率
3.7.5 1阶多项式
3.7.6 预测
 3.8 边缘似然估计用于多项式模型阶的选择
 3.9 小结
 3.10 练习
 其他阅读材料
第4章 贝叶斯推理
 4.1 非共轭模型
 4.2 二值响应
 4.3 点估计:最大后验估计方案
 4.4 拉普拉斯近似
4.4.1 拉普拉斯近似实例:近似γ密度
4.4.2 二值响应模型的拉普拉斯近似
 4.5 抽样技术
4.5.1 玩飞镖游戏
4.5.2 Metropolis-Hastings算法
4.5.3 抽样的艺术
 4.6 小结
 4.7 练习
 其他阅读材料
第5章 分类
 5.1 一般问题
 5.2 概率分类器
5.2.1 贝叶斯分类器
5.2.2 逻辑回归
 5.3 非概率分类器
5.3.1 K近邻算法
5.3.2 支持向量机和其他核方法…
5.3.3 小结
 5.4 评价分类器的性能
5.4.1 准确率01损失
5.4.2 敏感性和特异性
5.4.3 ROC曲线下的区域
5.4.4 混淆矩阵
 5.5 判别式和产生式分类器
 5.6 小结
 5.7 练习
 其他阅读材料
第6章 聚类分析
 6.1 一般问题
 6.2 K均值聚类
6.2.1 聚类数目的选择
6.2.2 K均值的不足之处
6.2.3 核化K均值
6.2.4 小结
 6.3 混合模型
6.3.1 生成过程
6.3.2 混合模型似然函数
6.3.3 EM算法
6.3.4 例子
6.3.5 EM寻找局部最优
6.3.6 组分数目的选择
6.3.7 混合组分的其他形式
6.3.8 用EM估计MAP
6.3.9 贝叶斯混合模型
 6.4 小结
 6.5 练习
 其他阅读材料
第7章 主成分分析与隐变量模型
 7.1 一般问题
 7.2 主成分分析
7.2.1 选择D
7.2.2 PCA的局限性
 7.3 隐变量模型
7.3.1 隐变量模型中的混合模型
7.3.2 小结
 7.4 变分贝叶斯
7.4.1 选择Q(θ)
7.4.2 优化边界
 7.5 PCA的概率模型
7.5.1 Qτ(τ)
7.5.2 Qxn(xn)
7.5.3 Qwn(wm)
7.5.4 期望值要求
7.5.5 算法
7.5.6 例子
 7.6 缺失值
7.6.1 缺失值作为隐变量
7.6.2 预测缺失值
 7.7 非实值数据
7.7.1 概率PPCA
7.7.2 议会数据可视化
 7.8 小结
 7.9 练习
 其他阅读材料
词汇表
索引

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.