登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』统计理论

書城自編碼: 2145989
分類: 簡體書→大陸圖書→教材研究生/本科/专科教材
作者: [美]舍维什
國際書號(ISBN): 9787510068119
出版社: 世界图书出版公司
出版日期: 2014-01-01
版次: 1 印次: 1
頁數/字數: 702/
書度/開本: 24开 釘裝: 平装

售價:NT$ 981

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
万千心理·我的精神分析之道:复杂的俄狄浦斯及其他议题
《 万千心理·我的精神分析之道:复杂的俄狄浦斯及其他议题 》

售價:NT$ 475.0
荷马:伊利亚特(英文)-西方人文经典影印21
《 荷马:伊利亚特(英文)-西方人文经典影印21 》

售價:NT$ 490.0
我的心理医生是只猫
《 我的心理医生是只猫 》

售價:NT$ 225.0
股权控制战略:如何实现公司控制和有效激励(第2版)
《 股权控制战略:如何实现公司控制和有效激励(第2版) 》

售價:NT$ 449.0
成吉思汗传:看历代帝王将相谋略 修炼安身成事之根本
《 成吉思汗传:看历代帝王将相谋略 修炼安身成事之根本 》

售價:NT$ 280.0
爱丁堡古罗马史-罗马城的起源和共和国的崛起
《 爱丁堡古罗马史-罗马城的起源和共和国的崛起 》

售價:NT$ 349.0
人生解忧:佛学入门四十讲
《 人生解忧:佛学入门四十讲 》

售價:NT$ 490.0
浪潮将至
《 浪潮将至 》

售價:NT$ 395.0

建議一齊購買:

+

NT$ 782
《 矩阵代数 》
+

NT$ 1433
《 美国数学会经典影印系列:偏微分方程(第二版)(英文版) 》
+

NT$ 751
《 高维数据统计学:方法、理论和应用 》
+

NT$ 789
《 时间序列的理论与方法 第2版 》
+

NT$ 988
《 统计学习基础 第2版 》
+

NT$ 432
《 统计学中的渐近性:基本概念 第2版 》
內容簡介:
《统计理论》是一部经典的讲述统计理论的研究生教程,综合性强,内容涵盖:估计;检验;大样本理论,这些都是研究生要进入博士或者更高层次必须学习的预备知识。为了让读者具备更加强硬的数学背景和更广阔的理论知识,书中不仅给出了经典方法,也给出了贝叶斯推理知识。目次:概率模型;充分统计量;决策理论;假设检验;估计;等价;大样本理论;分层模型;序列分析;附录:测度与积分理论;概率论;数学定理;分布概述。
读者对象:概率统计、数学专业以及相关专业的高年级本科生、研究生和相关的科研人员。
目錄
《统计理论(英文影印版)》
preface
chapter 1: probability models
1.1 background
1.1.1 general concepts
1.1.2 classical statistics
1.1.3 bayesian statistics
1.2 exchangeability
1.2.1 distributional symmetry
1.2.2 frequency and exchangeability
1.3 parametric models
1.3.1 prior, posterior, and predictive distributions
1.3.2 improper prior distributions
1.3.3 choosing probability distributions
1.4 definetti''s representation theorem
1.4.1 understanding the theorems
1.4.2 the mathematical statements
1.4.3 some examples
1.5 proofs of definetti''s theorem and related results*
1.5.1 strong law of large numbers
.1.5.2 the bernoulli case
1.5.3 the general finite case''
1.5.4 the general infinite case
1.5.5 formal introduction to parametric models*
1.6 infinite-dimensional parameters*
1.6.1 dirichlet processes
1.6.2 tailfree processes+
1.7 problems
chapter 2: sufficient statistics
2.1 definitions
2.1.1 notational overview
2.1.2 sufficiency
2.1.3 minimal and complete sufficiency
2.1.4 ancillarity
2.2 exponential families of distributions
2.2.1 basic properties
2.2.2 smoothness properties
2.2.3 a characterization theorem*
2.3 information
2.3.1 fisher information
2.3.2 kullback-leibler information
2.3.3 conditional information*
2.3.4 jeffreys'' prior*
2.4 extremal families''
2.4.1 the main results
2.4.2 examples
2.4.3 proofs+
2.5 problems
chapter 3: decision theory
3.1decision problems
3.1.1 framework
3.1.2 elements of bayesian decision theory
3.1.3 elements of classical decision theory
3.1.4 summary
3.2 classical decision theory
3.2.1 the role of sufficient statistics
3.2.2 admissibility
3.2.3 james-stein estimators
3.2.4 minimax rules
3.2.5 complete classes
3.3 axiomatic derivation of decision theory''
3.3.1 definitions and axioms
3.3.2 examples
3.3.3 the main theorems
3.3.4 relation to decision theory
3.3.5 proofs of the main theorems''
3.3.6 state-dependent utility*
3.4 problems:
chapter 4: hypothesis testing
4.1 introduction
4.1.1 a special kind of decision problem
4.1.2 pure significance tests
4.2 bayesian solutions
4.2.1 testing in general
4.2.2 bayes factors
4.3 most powerful tests
4.3.1 simple hypotheses and alternatives
4.3.2 simple hypotheses, composite alternatives
4.3.3 one-sided tests
4.3.4 two-sided hypotheses
4.4 unbiased tests
4.4. i general results
4.4.2 interval hypotheses
4.4.3 point hypotheses
4.5 nuisance parameters
4.5.1 neyman structure
4.5.2 tests about natural parameters
4.5.3 linear combinations of natural parameters
4.5.4 other two-sided cases''
4.5.5 likelihood ratio tests
4.5.6 the standard f-test as a bayes rule*.
4.6 p-values
4.6.1 definitions and examples
4.6.2 p-values and bayes factors
4.7 problems
chapter 5: estimation
5.1 point estimation
5.1.1 minimum variance unbiased estimation
5.1.2 lower bounds on the variance of unbiased estimators
5.1.3 maximum likelihood estimation
5.1.4 bayesian estimation
5.1.5 robust estimation*
5.2 set estimation
5.2.1 confidence sets
5.2.2 prediction sets*
5.2.3 tolerance sets*
5.2.4 bayesian set estimation
5.2.5 decision theoretic set estimation''
5.3 the bootstrap*
5.3.1 the general concept
5.3.2 standard deviations and bias
5.3.3 bootstrap confidence intervals
5.4 problems
chapter 6: equivariance
6.1 common examples
6.1.1 location problems
6.1.2 scale problems''
6.2 equivariant decision theory
6.2.1 groups of transformations
6.2.2 equivariance and changes of units
6.2.3 minimum risk equivariant decisions
6.3 testing and confidence intervals''
6.3.1 p-values in invariant problems
6.3.2 equivariant confidence sets
6.3.3 invariant tests*
6.4 problems
chapter 7: large sample theory
7.1 convergence concepts
7.1.1 deterministic convergence
7.1.2 stochastic convergence
7.1.3 the delta method
7.2 sample quantiles
7.2.1 a single quantile
7.2.2 several quantiles
7.2.3 linear combinations of quantiles''
7.3 large sample estimation
7.3.1 some principles of large sample estimation
7.3.2 maximum likelihood estimators
7.3.3 mles in exponential families
7.3.4 examples of inconsistent mles
7.3.5 asymptotic normality of mles
7.3.6 asymptotic properties of m-estimators''
7.4 large sample properties of posterior distributions
7.4.1 consistency of posterior distributions+
7.4.2 asymptotic normality of posterior distributions
7.4.3 laplace approximations to posterior distributions*
7.4.4 asymptotic agreement of predictive distributions+
7.5 large sample tests
7.5.1 likelihood ratio tests
7.5.2 chi-squared goodness of fit tests
7.6 problems
chapter 8: hierarchical models
8.1 introduction
8.1.1 general hierarchical models
8.1.2 partial exchangeability''
8.1.3 examples of the representation theorem''
8.2 normal linear models
8.2.1 one-way anova
8.2.2 two-way mixed model anova''
8.2.3 hypothesis testing
8.3 nonnormal models''
8.3.1 poisson process data
8.3.2 bernoulli process data
8.4 empirical bayes analysis*
8.4.1 nayve empirical bayes
8.4.2 adjusted empirical bayes
8.4.3 unequal variance case
8.5 successive substitution sampling
8.5.1 the general algorithm
8.5.2 normal hierarchical models
8.5.3 nonnormal models
8.6 mixtures of models
8.6.1 general mixture models
8.6.2 outliers
8.6.3 bayesian robustness
8.7 problems
chapter 9: sequential analysis
9.1 sequential decision problems
9.2 the sequential probability ratio test
9.3 interval estimation*
9.4 the relevance of stopping rules
9.5 problems
appendix a: measure and integration theory
a.1 overview
a.1.1 definitions
a.1.2 measurable functions
a.1.3 integration
a.1.4 absolute continuity
a.2 measures
a.3 measurable functions
a.4 integration
a.5 product spaces
a.6 absolute continuity
a.7 problems
appendix b: probability theory
b.1 overview
b.i.1 mathematical probability
b.l.2 conditioning
b.1.3 limit theorems
b.2 mathematical probability
b.2.1 random quantities and distributions
b.2.2 some useful inequalities
b.3 conditioning
b.3.1 conditional expectations
b.3.2 borel spaces''
b.3.3 conditional densities
b.3.4 conditional independence
b.3.5 the law of total probability
b.4 limit theorems
b.4.1 convergence in distribution and in probability
b.4.2 characteristic functions
b.5 stochastic processes
b.5.1 introduction
b.5.2 martingales+
b.5.3 markov chains*
b.5.4 general stochastic processes
b.6 subjective probability
b.7 simulation*
b.8 problems
appendix c: mathematical theorems not proven here
c.1 real analysis
c.2 complex analysis
c.3 functional analysis
appendix d: summary of distributions
d.1 univariate continuous distributions
d.2 univariate discrete distributions
d.3 multivariate distributions
references
notation and abbreviation index
name index
subject index

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.