Preface
Prelude
Ⅰ. Linear Dynamical Systems
1. Cauchy''s Functional Equation
2. Finite-Dimensional Systems: Matrix Semigroups
3. Uniformly Continuous Operator Semigroups
4. More Semigroups
A. Multiplication Semigroups On Co(Fi)
B. Multiplication Semigroups On Lp(Ω,Μ)
C. Translation Semigroups
5. Strongly Continuous Semigroups
A. Basic Properties
B. Standard Constructions
Notes
Ⅱ. Semigroups, Generators, And Resolvents
1. Generators Of Semigroups And Their Resolvents
2. Examples Revisited
A. Standard Constructions
B. Standard Examples
3. Hille-Yosida Generation Theorems
A. Generation Of Groups And Semigroups
B. Dissipative Operators And Contraction Semigroups
C. More Examples
4. Special Classes Of Semigroups
A. Analytic Semigroups
B. Differentiable Semigroups
C. Eventually Norm-Continuons Semigroups
D. Eventually Compact Semigroups
E. Examples
5. Interpolation And Extrapolation Spaces For Semigroups
Simon Brendle
A. Sobolev Towers
B. Favard And Abstract H61der Spaces
C. Fractional Powers
6. Well-Posedness For Evolution Equations
Notes
Ⅲ Perturbation And Approximation Of Semigroups
1. Bounded Perturbations
2. Perturbations Of Contractive And Analytic Semigroups
3. More Perturbations
A. The Perturbation Theorem Of Desch-Schappacher
B. Comparison Of Semigroups
C. The Perturbation Theorem Of Miyadera-Voigt
D. Additive Versus Multiplicative Perturbations
4. Trotter-Kato Approximation Theorems
A. A Technical Tool: Pseudoresolvents
B. The Approximation Theorems
C. Examples
5. Approximation Formulas
A. Chernoff Product Formula
B. Inversion Formulas
Notes
Ⅳ Spectral Theory For Semigroups And Generators
1. Spectral Theory For Closed Operators
2. Spectrum Of Semigroups And Generators
A. Basic Theory
B. Spectrum Of Induced Semigroups
C. Spectrum Of Periodic Semigroups
3. Spectral Mapping Theorems
A. Examples And Counterexamples
B. Spectral Mapping Theorems For Semigroups
C. Weak Spectral Mapping Theorem For Bounded Groups
4. Spectral Theory And Perturbation
Notes
Ⅴ. Asymptotics Of Semigroups
1. Stability And Hyperbolicity For Semigroups
A. Stability Concepts
B. Characterization Of Uniform Exponential Stability
C. Hyperbolic Decompositions
2. Compact Semigroups
A. General Semigroups
B. Weakly Compact Semigroups
C. Strongly Compact Semigroups
3. Eventually Compact And Quasi-Compact Semigroups
4. Mean Ergodic Semigroups
Notes
Ⅵ. Semigroups Everywhere
1. Semigroups For Population Equations
A. Semigroup Method For The Cell Equation
B. Intermezzo On Positive Semigroups
C. Asymptotics For The Cell Equation
Notes
2. Semigroups For The Transport Equation
A. Solution Semigroup For The Reactor Problem
B. Spectral And Asymptotic Behavior
Notes
3. Semigroups For Second-Order Cauchy Problems
A. The State Space X = Xb1 × X
B. The State Space X = X × X
C. The State Space X = Xc1 × X
Notes
4. Semigroups For Ordinary Differential Operators
M. Campiti, G. Metafune, D. Pallara, And S. Romanelli
A. Nondegenerate Operators On R And R+
B. Nondegenerate Operators On Bounded Intervals
C. Degenerate Operators
D. Analyticity Of Degenerate Semigroups
Notes
5. Semigroups For Partial Differential Operators
Abdelaziz Rhandi
A. Notation And Preliminary Results
B. Elliptic Differential Operators With Constant
Coefficients
C. Elliptic Differential Operators With Variable
Coefficients
Notes
6. Semigroups For Delay Differential Equations
A. Well-Posedness Of Abstract Delay Differential Equations
B. Regularity And Asymptotics
C. Positivity For Delay Differential Equations
Notes
7. Semigroups For Volterra Equations
A. Mild And Classical Solutions
B. Optimal Regularity
C. Integro-Differential Equations
Notes
8. Semigroups For Control Theory
A. Controllability
B. Observability
C. Stabilizability And Detectability
D. Transfer Functions And Stability
Notes
9. Semigroups For Nonautonomons Cauchy Problems
Roland Schnaubelt
A. Cauchy Problems And Evolution Families
B. Evolution Semigroups
C. Perturbation Theory
D. Hyperbolic Evolution Families In The Parabolic Case
Notes
Ⅶ. A Brief History Of The Exponential Function
Tanja Hahn And Carla Perazzoli
1. A Bird''s-Eye View
2. The Functional Equation
3. The Differential Equation
4. The Birth Of Semigroup Theory
Appendix
A. A Reminder Of Some Functional Analysis
B. A Reminder Of Some Operator Theory
C. Vector-Valued Integration
A. The Bochner Integral
B. The Fourier Transform
C. The Laplace Transform
Epilogue
Determinism: Scenes From The Interplay Between
Metaphysics And Mathematics
Gregor Nickel
1. The Mathematical Structure
2. Are Relativity, Quantum Mechanics, And Chaos
Deterministic?
3. Determinism In Mathematical Science From Newton To
Einstein
4. Developments In The Concept Of Object From Leibniz To
Kant
5. Back To Some Roots Of Our Problem: Motion In History
6. Bibliography And Further Reading
References
List Of Symbols And Abbreviations
Index