新書推薦:
《
往事和近事:历史地理学泰斗、百家讲坛主讲葛剑雄经典文集
》
售價:NT$
349.0
《
父母的关键认知
》
售價:NT$
225.0
《
第三帝国:一部新的历史(纳粹主义具有何种魔力?纳粹运动会卷土重来吗?一部全面揭示希特勒及其罪恶帝国黑暗的历史)
》
售價:NT$
490.0
《
强迫症的历史:德国人的犹太恐惧症与大屠杀(德国历史上的反犹文化源自哪里?如何演化为战争对犹太人灭绝性的种族杀戮?德国历史研究专家克劳斯·费舍尔叙述德国反犹史及其极端形态的典范之作)
》
售價:NT$
440.0
《
粤港澳大湾区舆论引导与舆情应对精品案例:基于媒介化治理的思考
》
售價:NT$
445.0
《
大地的勇士
》
售價:NT$
340.0
《
中华老学·第十一辑
》
售價:NT$
380.0
《
债务之网:瑞士民商法的发展历史(1800-1900)
》
售價:NT$
345.0
|
編輯推薦: |
阿里巴巴高级技术专家(OceanBase核心开发人员)撰写,阳振坤、章文嵩、杨卫华、汪源、余锋(褚霸)、赖春波等来自阿里、新浪、网易和百度的资深技术专家联袂推荐。
系统讲解构建大规模存储系统的核心技术和原理,详细分析Google、Amazon、Microsoft和阿里巴巴的大规模分布式存储系统的原理。
实战性强,通过对阿里巴巴的分布式数据库OceanBase的实现细节进行深入分析,完整讲解了大规模分布式存储系统的架构方法与应用实践。
|
內容簡介: |
本书是分布式系统领域的经典著作,由阿里巴巴高级技术专家“阿里日照”(OceanBase核心开发人员)撰写,阳振坤、章文嵩、杨卫华、汪源、余锋(褚霸)、赖春波等来自阿里、新浪、网易和百度的资深技术专家联袂推荐。理论方面,不仅讲解了大规模分布式存储系统的核心技术和基本原理,而且对谷歌、亚马逊、微软和阿里巴巴等国际型大互联网公司的大规模分布式存储系统进行了分析;实战方面,首先通过对阿里巴巴的分布式数据库OceanBase的实现细节的深入剖析完整地展示了大规模分布式存储系统的架构与设计过程,然后讲解了大规模分布式存储技术在云计算和大数据领域的实践与应用。
本书内容分为四个部分:基础篇——分布式存储系统的基础知识,包含单机存储系统的知识,如数据模型、事务与并发控制、故障恢复、存储引擎、压缩解压缩等;分布式系统的数据分布、复制、一致性、容错、可扩展性等。范型篇——介绍谷歌、亚马逊、微软、阿里巴巴等著名互联网公司的大规模分布式存储系统架构,涉及分布式文件系统、分布式键值系统、分布式表格系统以及分布式数据库技术等。实践篇——以阿里巴巴的分布式数据库OceanBase为例,详细介绍分布式数据库内部实现,以及实践过程中的经验。专题篇——介绍分布式系统的主要应用:云存储和大数据,这些是近年来的热门领域,本书介绍了云存储平台、技术与安全,以及大数据的概念、流式计算、实时分析等。
|
關於作者: |
杨传辉 阿里巴巴高级技术专家,花名日照,OceanBase核心开发人员,对分布式系统的理论和工程实践有深刻理解。曾在百度作为核心成员参与类MapReduce系统、类Bigtable系统和百度分布式消息队列等底层基础设施架构工作。热衷于分布式存储和计算系统设计,乐于分享,有技术博客NosqlNotes(http:nosqlnotes.net)。
阿里巴巴高级技术专家(OceanBase核心开发人员)撰写,阳振坤、章文嵩、杨卫华、汪源、余锋(褚霸)、赖春波等来自阿里巴巴、新浪、网易和百度的资深技术专家联袂推荐。
系统讲解构建大规模存储系统的核心技术和原理,详细分析Google、Amazon、Microsoft和阿里巴巴的大规模分布式存储系统的原理。
实战性强,通过对阿里巴巴的分布式数据库OceanBase的实现细节进行深入分析,全面讲解了大规模分布式存储系统的架构方法与应用实践。
|
目錄:
|
前言
第1章 概述
1.1 分布式存储概念
1.2 分布式存储分类
第一篇 基础篇
第2章 单机存储系统
2.1 硬件基础
2.1.1 CPU架构
2.1.2 IO总线
2.1.3 网络拓扑
2.1.4 性能参数
2.1.5 存储层次架构
2.2 单机存储引擎
2.2.1 哈希存储引擎
2.2.2 B树存储引擎
2.2.3 LSM树存储引擎
2.3 数据模型
2.3.1 文件模型
2.3.2 关系模型
2.3.3 键值模型
2.3.4 SQL与NoSQL
2.4 事务与并发控制
2.4.1 事务
2.4.2 并发控制
2.5 故障恢复
2.5.1 操作日志
2.5.2 重做日志
2.5.3 优化手段
2.6 数据压缩
2.6.1 压缩算法
2.6.2 列式存储
第3章 分布式系统
3.1 基本概念
3.1.1 异常
3.1.2 一致性
3.1.3 衡量指标
3.2 性能分析
3.3 数据分布
3.3.1 哈希分布
3.3.2 顺序分布
3.3.3 负载均衡
3.4 复制
3.4.1 复制的概述
3.4.2 一致性与可用性
3.5 容错
3.5.1 常见故障
3.5.2 故障检测
3.5.3 故障恢复
3.6 可扩展性
3.6.1 总控节点
3.6.2 数据库扩容
3.6.3 异构系统
3.7 分布式协议
3.7.1 两阶段提交协议
3.7.2 Paxos协议
3.7.3 Paxos与2PC
3.8 跨机房部署
第二篇 范型篇
第4章 分布式文件系统
4.1 Google文件系统
4.1.1 系统架构
4.1.2 关键问题
4.1.3 Master设计
4.1.4 ChunkServer设计
4.1.5 讨论
4.2 Taobao File System
4.2.1 系统架构
4.2.2 讨论
4.3 Facebook Haystack
4.3.1 系统架构
4.3.2 讨论
4.4 内容分发网络
4.4.1 CDN架构
4.4.2 讨论
第5章 分布式键值系统
5.1 Amazon Dynamo
5.1.1 数据分布
5.1.2 一致性与复制
5.1.3 容错
5.1.4 负载均衡
5.1.5 读写流程
5.1.6 单机实现
5.1.7 讨论
5.2 淘宝Tair
5.2.1 系统架构
5.2.2 关键问题
5.2.3 讨论
第6章 分布式表格系统
6.1 Google Bigtable
6.1.1 架构
6.1.2 数据分布
6.1.3 复制与一致性
6.1.4 容错
6.1.5 负载均衡
6.1.6 分裂与合并
6.1.7 单机存储
6.1.8 垃圾回收
6.1.9 讨论
6.2 Google Megastore
6.2.1 系统架构
6.2.2 实体组
6.2.3 并发控制
6.2.4 复制
6.2.5 索引
6.2.6 协调者
6.2.7 读取流程
6.2.8 写入流程
6.2.9 讨论
6.3 Windows Azure Storage
6.3.1 整体架构
6.3.2 文件流层
6.3.3 分区层
6.3.4 讨论
第7章 分布式数据库
7.1 数据库中间层
7.1.1 架构
7.1.2 扩容
7.1.3 讨论
7.2 Microsoft SQL Azure
7.2.1 数据模型
7.2.2 架构
7.2.3 复制与一致性
7.2.4 容错
7.2.5 负载均衡
7.2.6 多租户
7.2.7 讨论
7.3 Google Spanner
7.3.1 数据模型
7.3.2 架构
7.3.3 复制与一致性
7.3.4 TrueTime
7.3.5 并发控制
7.3.6 数据迁移
7.3.7 讨论
第三篇 实践篇
第8章 OceanBase架构初探
8.1 背景简介
8.2 设计思路
8.3 系统架构
8.3.1 整体架构图
8.3.2 客户端
8.3.3 RootServer
8.3.4 MergeServer
8.3.5 ChunkServer
8.3.6 UpdateServer
8.3.7 定期合并数据分发
8.4 架构剖析
8.4.1 一致性选择
8.4.2 数据结构
8.4.3 可靠性与可用性
8.4.4 读写事务
8.4.5 单点性能
8.4.6 SSD支持
8.4.7 数据正确性
8.4.8 分层结构
第9章 分布式存储引擎
9.1 公共模块
9.1.1 内存管理
9.1.2 基础数据结构
9.1.3 锁
9.1.4 任务队列
9.1.5 网络框架
9.1.6 压缩与解压缩
9.2 RootServer实现机制
9.2.1 数据结构
9.2.2 子表复制与负载均衡
9.2.3 子表分裂与合并
9.2.4 UpdateServer选主
9.2.5 RootServer主备
9.3 UpdateServer实现机制
9.3.1 存储引擎
9.3.2 任务模型
9.3.3 主备同步
9.4 ChunkServer实现机制
9.4.1 子表管理
9.4.2 SSTable
9.4.3 缓存实现
9.4.4 IO实现
9.4.5 定期合并数据分发
9.4.6 定期合并限速
9.5 消除更新瓶颈
9.5.1 读写优化回顾
9.5.2 数据旁路导入
9.5.3 数据分区
第10章 数据库功能
10.1 整体结构
10.2 只读事务
10.2.1 物理操作符接口
10.2.2 单表操作
10.2.3 多表操作
10.2.4 SQL执行本地化
10.3 写事务
10.3.1 写事务执行流程
10.3.2 多版本并发控制
10.4 OLAP业务支持
10.4.1 并发查询
10.4.2 列式存储
10.5 特色功能
10.5.1 大表左连接
10.5.2 数据过期与批量删除
第11章 质量保证、运维及实践
11.1 质量保证
11.1.1 RD开发
11.1.2 QA测试
11.1.3 试运行
11.2 使用与运维
11.2.1 使用
11.2.2 运维
11.3 应用
11.3.1 收藏夹
11.3.2 天猫评价
11.3.3 直通车报表
11.4 最佳实践
11.4.1 系统发展路径
11.4.2 人员成长
11.4.3 系统设计
11.4.4 系统实现
11.4.5 使用与运维
11.4.6 工程现象
11.4.7 经验法则
第四篇 专题篇
第12章 云存储
12.1 云存储的概念
12.2 云存储的产品形态
12.3 云存储技术
12.4 云存储的核心优势
12.5 云平台整体架构
12.5.1 Amazon云平台
12.5.2 Google云平台
12.5.3 Microsoft云平台
12.5.4 云平台架构
12.6 云存储技术体系
12.7 云存储安全
第13章 大数据
13.1 大数据的概念
13.2 MapReduce
13.3 MapReduce扩展
13.3.1 Google Tenzing
13.3.2 Microsoft Dryad
13.3.3 Google Pregel
13.4 流式计算
13.4.1 原理
13.4.2 Yahoo S4
13.4.3 Twitter Storm
13.5 实时分析
13.5.1 MPP架构
13.5.2 EMC Greenplum
13.5.3 HP Vertica
13.5.4 Google Dremel
参考资料
|
內容試閱:
|
前言
随着社交网络、移动互联网、电子商务等技术的不断发展,互联网的使用者贡献了越来越多的内容。为了处理这些内容,每个互联网公司在后端都有一套成熟的分布式系统用于数据的存储、计算以及价值提取。Google是全球最大的互联网公司,也是在分布式技术上相对成熟的公司,其公布的Google分布式文件系统GFS、分布式计算系统MapReduce、分布式表格系统Bigtable都成为业界竞相模仿的对象,最近公布的全球数据库Spanner更是能够支持分布在世界各地上百个数据中心的上百万台服务器。Google的核心技术正是后端这些处理海量数据的分布式系统。和Google类似,国外的亚马逊、微软以及国内互联网三巨头阿里巴巴、百度和腾讯的核心技术也是其后端的海量数据处理系统。
本书的内容是介绍互联网公司的大规模分布式存储系统。与传统的高端服务器、高端存储器和高端处理器不同的是,互联网公司的分布式存储系统由数量众多的、低成本和高性价比的普通PC服务器通过网络连接而成。互联网的业务发展很快,而且注重成本,这就使得存储系统不能依靠传统的纵向扩展的方式,即先买小型机,不够时再买中型机,甚至大型机。互联网后端的分布式系统要求支持横向扩展,即通过增加普通PC服务器来提高系统的整体处理能力。普通PC服务器性价比高,故障率也高,需要在软件层面实现自动容错,保证数据的一致性。另外,随着服务器的不断加入,需要能够在软件层面实现自动负载均衡,使得系统的处理能力得到线性扩展。
分布式存储和当今同样备受关注的云存储和大数据又是什么关系呢?分布式存储是基础,云存储和大数据是构建在分布式存储之上的应用。移动终端的计算能力和存储空间有限,而且有在多个设备之间共享资源的强烈的需求,这就使得网盘、相册等云存储应用很快流行起来。然而,万变不离其宗,云存储的核心还是后端的大规模分布式存储系统。大数据则更近一步,不仅需要存储海量数据,还需要通过合适的计算框架或者工具对这些数据进行分析,抽取其中有价值的部分。如果没有分布式存储,便谈不上对大数据进行分析。仔细分析还会发现,分布式存储技术是互联网后端架构的“九阳神功”,掌握了这项技能,以后理解其他技术的本质会变得非常容易。
分布式存储技术如此重要,市面上也有很多分布式系统相关的书籍。然而,这些书籍往往注重理论不重实践,且所述理论也不太适合互联网公司的大规模存储系统。这是因为,虽然分布式系统研究了很多年,但是大规模分布式存储系统是在近几年才流行起来,而且起源于以Google为首的企业界而非学术界。笔者2007年年底加入百度公司,师从阳振坤老师,从事大规模分布式存储的研究和实践工作,曾经开发过类似GFS、MapReduce和Bigtable的分布式系统,后来转战阿里巴巴继续开发分布式数据库OceanBase,维护分布式技术博客NosqlNotes(http:www.nosqlnotes.net)。笔者在业余时间阅读并理解了绝大部分分布式系统原理和各大互联网公司的系统范型相关论文,深知分布式存储系统的复杂性,也能够体会到广大读者渴望弄清楚分布式存储技术本质和实现细节的迫切心情,因而集中精力编写了这本书,希望对从事分布式存储应用的技术人员有所裨益。
本书的目标是介绍互联网公司的大规模分布式存储系统,共分为四篇:
基础篇。基础知识包含两个部分:单机存储系统以及分布式系统。其中,单机存储系统的理论基础是数据库技术,包括数据模型、事务与并发控制、故障恢复、存储引擎、数据压缩等;分布式系统涉及数据分布、复制、一致性、容错、可扩展性等分布式技术。另外,分布式存储系统工程师还需要一项基础训练,即性能预估,因此,基础篇也会顺带介绍硬件基础知识以及性能预估方法。
范型篇。这部分内容将介绍Google、亚马逊、微软、阿里巴巴等各大互联网公司的大规模分布式存储系统,分为四章:分布式文件系统、分布式键值系统、分布式表格系统以及分布式数据库。
实践篇。这部分内容将以笔者在阿里巴巴开发的分布式数据库OceanBase为例详细介绍分布式数据库内部实现以及实践过程中的经验总结。
专题篇。云存储和大数据是近年来兴起的两大热门领域,其底层都依赖分布式存储技术,这部分将简单介绍这两方面的基础知识。
本书适合互联网行业或者其他从事分布式系统实践的工程人员,也适合大学高年级本科生和研究生作为分布式系统或者云计算相关课程的参考书籍。阅读本书之前,建议首先理解分布式系统和数据库相关基础理论,接着阅读第一篇。如果对各个互联网公司的系统架构感兴趣,可以选择阅读第二篇的某些章节;如果对阿里巴巴OceanBase的架构设计和实现感兴趣,可以顺序阅读第三篇。最后,如果对云存储或者大数据感兴趣,可以选择阅读第四篇的某个章节。
感谢阳振坤老师多年以来对我在云计算和分布式数据库这两个领域的研究实践工作的指导和鼓励。感谢在百度以及阿里巴巴与我共事多年的兄弟姐妹,我们患难与共,一起实现共同的梦想。感谢机械工业出版社的吴怡编辑、新浪微博的杨卫华先生、百度的侯震宇先生以及支付宝的童家旺先生在本书撰写过程中提出的宝贵意见。
由于分布式存储技术涉及一些公司的商业机密,加上笔者水平有限、时间较紧,所以书中难免存在谬误,很多技术点涉及的细节描述得还不够详尽,恳请读者批评指正。可将任何意见和建议发送到我的邮箱knuthocean@163.com,本书相关的勘误和技术细节说明也会发布到我的个人博客NosqlNotes。我的新浪微博账号是“阿里日照”,欢迎读者通过邮件、博客或者微博与我交流分布式存储相关的任何问题。我也将密切跟踪分布式存储技术的发展,吸收您的意见,适时编写本书的升级版本。
杨传辉
2013年7月于北京
|
|