|
內容簡介: |
Inthisbook,welistandintroducesomeinteresting,importantorusefulmathematicsbooks.Mostselectedbookswerepublishedduringthetwentiethcentury.Fortheconvenienceofthereader,wehavearrangedbooksaccordingtotopics.Besidessomeintroductionsandcomments,wealsoquotefrominformativereviewsofthesebooksfromsourcesincludingMathSciNet,ZentralblattMathandtheBulletinoftheAmericanMathematicaSociety.Acommonwayforpeopletopickoutbookstoreadistofollowrecommendationsofeitherbookreviewsorexperts.Thelistofbooksisprobablythemostinterestingpartofthisbook,Oncethetitlesorauthors''namesareknown,itisrelativelyeasytofindvaluableinformationandreviewsaboutthebookfrommanydifferentsources(butitmighttakesomeeffortstofindgoodbooksonsubjectsoutsideone''sexpertise.)Inspiteofthis,wehopethatadditionalinformationprovidedhereaboutthesebooksmightbehelpfulandconvenient.
|
關於作者: |
lizhenjiisaprofessorofmathematicsatuniversityofmichiganandstudiessubjectsrelatedtoliegroups,discretesubgroupsofliegroups,transformationgroupsandrelatedspaces.helovesbooksandisachief-editoroffourbookseries:advancedlecturesinmathematics,mathematicsandhumanities,panoramaofmathematics,surveysofmodernmathematics,andofthejournalpureandappliedmathematicsquarterly.heisalsoaneditorofjournalsasianjournalofmathematicsandscienceinchina:mathematics.
hewasasloanfellowandreceivedthensfpostdoctoralfellowshipandthemorningsidesilvermedalofmathematics.heenjoyslisteningtogoodmathematicstalksondiversetopicsandhasorganizedover30summerschools,conferencesorworkshops.heisalsoanactiveorganizerofseminarsandcolloquiums.forexample,heistheorganizerofoneofthefirstseminarscalled“whatis...”intheworld.
|
目錄:
|
1、Introduction
2、ExpositoryBooksOnMathematicsAndMathematicians
2.1PopularAndExpositoryBooksOnMathematics
2.1.1R.Courant,H.Robbins,WhatIsMathematics?OxfordUniversityPress,NewYork,1941.Xix+521Pp
2.1.2A.D.Aleksandrov,A.N.Kolmogorov,M.A.Lavrent''ev,Mathematics:ItsContent,Methods,AndMeaning.Vol.I,Vol.Ii,Vol.Iii,TheM.I.T.Press,Cambridge,Mass.,1963,Xi+359Pp.;Xi+377Pp.;Xi+356Pp..TranslatedByS.H.GouldAndT.Bartha;S.H.Gould;K.Hirsch
2.1.3G.P\''Olya,HowToSolveIt.ANewAspectOfMathematicalMethod.ExpandedVersionOfThe1988Edition,WithANewForewordByJohnH.Conway,PrincetonScienceLibrary,PrincetonUniversityPress,2004.Xxviii+253Pp
2.1.4G.H.Hardy,AMathematician''sApology,WithAForewordByC.P.Snow,ReprintOfThe1967Edition,Canto,CambridgeUniversityPress,Cambridge,1992
2.1.5J.E.Littlewood,Littlewood''sMiscellany,EditedAndWithAForewordByBolaBollobas,CambridgeUniversityPress,Cambridge,1986.Vi+200Pp
2.1.6AutobiographiesOfMathematicians
2.1.7H.Weyl,Symmetry.ReprintOfThe1952Original.PrincetonScienceLibrary.PrincetonUniversityPress,Princeton,N.J.,1989
2.1.8D.Hilbert,S.Cohn-Vossen,GeometryAndTheImagination,AmericanMathematicalSociety,1,1999.357Pages
2.2BiographiesOfMathematiciansAndHistoryOfMathematics
2.2.1E.T.Bell,MenOfMathematics,Touchstone,1986.608Pages
……
3、Analysis
4、Algebra
5、Geometry
6、Topology
7、NumberTheory
8、DifferentialEquations
9、LieTheories
10、MathematicalPhysics,DynamicalSystemsAndErgodicTheory
11、DiscreteMathematicsAndCombinatorics
12、ProbabilityAndApplications
13、FoundationsOfMath,ComputerScience,NumericalMath
|
內容試閱:
|
Stewartisafamouswriterofpopularmathematics,andthisbookisprobablyoneofthebestbookshehaswritten.Thoughitcoversmanystandardtopicsrelatedtogrouptheoryandsymmetry,hisbroadknowledgeabouthistoryandmathematicsmakesthisauniquebookamongmanybooksonsymmetry.
AccordingtoMathSciNet,"IanStewarthaswrittenastoryaboutsymmetryanditsroleinmathematicsandphysics,beginningwiththeBabyloniansandendingwithmodernphysics.It''sabookforthenon-mathematicianwhowouldliketolearnsomethingaboutthenatureofmathematics,andsoperhapsthereisnobettersubjectforsuchabookthansymmetry,anenticingpropertythatiswellknowntomostreadersthroughartandmusic.ButStewart''sbookisnotapicturebook,thoughitiswellillustrated.Neitherdoesitcontainmanyformulas,thoughtheauthortreatsmathematicsinaseriousway.Thebook''sintentionistodescribewhatsymmetrymeanstomathematiciansandwhyithasplayedsuchanimportantrolethroughouttheagesinbothmathematicsandphysics.Thereaderbeginstoseewhyandhowabstractmathematicalthoughtisintimatelyconnectedwithtruth,beauty,andthenatureofthephysicaluniverse.Theauthoralsoentertainsthereaderwithstoriesaboutthe''muddleofmathematicians''wemeetasthestoryunfolds."
AccordingtoPublishersWeekly,"whilethemathbehindsymmetryisimportant,theheartofthishistoryliesinitscharacters,fromahypotheticalBabylonianscribewithaseriouscaseofmathanxiety,throughEvaristeGalois(inventorof''grouptheory''),killedat21inaduel,andWilliamHamilton,whoseeurekamomentcamein''aflashofintuitionthatcausedhimtovandalizeabridge,''toAlbertEinsteinandthequantumphysicistswhousedgrouptheoryandsymmetrytodescribetheuniverse."J.Rosen,Sym''metryDiscovered:ConceptsandApplicationsinNatureandScience,Revisedreprintofthe1975original,DoverPublications,Inc.,Mineola,NY,1998.xiv+152pp.Thisisagoodintroductiontogrouptheoryandapplicationsofsymmetry.Itiselementary,andconceptsanddefinitionsarecarefullyexplained.AccordingtoMathSciNet,"Thisisanentertainingintroductiontogeometricalrepresentationsofdiscretegroups,enlivenedbyabundantillustrationsanddelightfullyrelevantquotationsfrombooksbyA.A.Milne.Theconceptofsymmetryisextendedfromisometriestosimilarities,andfromgeometrytophysicsimusicandbiology.ThusthebookmightberegardedasamoderncounterpartforH.Weyl''sbookSy''m''metry"'',thoughitlacksWeyl''spolishedstyle."
Rosenisaphysicistandhasalsowrittenotherbooksongrouptheoryandsymmetry.Thebasicpointofthesebooksisthatsciencedoesnotonlymakeuseofsymmetry,butisessentiallysymmetry.Indeed,sciencebuildsonthefoundationofreproducibility,predictability,andreduction,allofwhicharesymmetries.
……
|
|