登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2025年01月出版新書

2024年12月出版新書

2024年11月出版新書

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

『簡體書』金融中的数值方法和优化

書城自編碼: 2056499
分類: 簡體書→大陸圖書→自然科學數學
作者: 吉利
國際書號(ISBN): 9787510052651
出版社: 世界图书出版公司
出版日期: 2013-01-01
版次: 1 印次: 1
頁數/字數: 584/
書度/開本: 24开 釘裝: 平装

售價:NT$ 828

我要買

share:

** 我創建的書架 **
未登入.



內容簡介:
《金融中的数值方法和优化英文》旨在为读者介绍金融计算工具—基本数值分析和计算技巧,如期权定价、并突出了模拟和优化的重要性,用许多章讲述投资组合保险和风险估计问题。特别地,有几章用于讲述优化探索和如何将他们应用于投资组合的选择、估值的校准和期权定价模型。这些具体的例子让读者学习了解决问题的具体步骤,以及将这些步骤举一反三。同时,这些应用使得《金融中的数值方法和优化英文》的参考价值大大提高。
目錄
List of Algorithms
Acknowledgements
1.Introduction
1.1 About this book
1.2 Principles
1.3 on software
1.4 on approximations andaccuracy
1.5 Summary: the theme of the book
Part One Fundamentals
2. Numerical analysisin a nutshell
2.1 Computer arithmetic
Representation of real numbers
Machine precision
Example of limitations of floating point arithmetic
2.2 Measuringerrors
2.3 Approximating derivatives with finite differences
Approximating first-order derivatives
Approximating second-order derivatives
Partial derivatives
How to choose h
Truncation error for forward difference
2.4 Numerical instability and ill-conditioning
Example of a numerically unstable algorithm
Example of an ill-conditioned problem
2.5Condition number of a matrix
Comments and examples
2.6 A primer on algorithmic and computational complexity
2.6.1 Criteria for comparison
Order of complexity and classification
2.A Operation count for basiclinear algebra operations
3. Linear equations and Least Squares problems
Choice of method
3.1 Direct methods
3.1.1 Triangular systems
3.1.2 LU factorization
3.1.3 Cholesky factorization
3.1.4 QRdecomposition
3.1.5 Singular value decomposition
3.2 Iterative methods
3.2.1 Jacobi, Gauss-Seidel, and SOR
Successive overrelaxation
3.2.2 Convergence of niterative methods
3.2.3 General structure of algorithms for iterative methods
3.2.4 Block iterative methods
3.3 Sparse linear systems
3.3.1 Tridiagonal systems
3.3.2 Irregular sparse matrices
3.3.3 Structural properties of sparse matrices
3.4 The Least Squares problem
3.4.1 Method of normal equations
3.4.2 Least Squares via QR factorization
3.4.3 Least Squares via SVD decomposition
3.4.4 Final remarks
The backslash operator in Matlab
4. Finite difference methods
4.1 An example of a numerical solution
A first numerical approximation
A second numerical approximation
4.2 Classification of differential equations
4.3 The Black-Scholes equation
4.3.1 Explicit, implicit, and θ-methods
4.3.2 Initial and boundary conditions and definition of the
grid
4.3.3 Implementation of the θ-method with Matlab
4.3.4 Stability
4.3.5 Coordinate transformation of space variables
4.4 American options
4.A A note on Matlab''s function spdiags
5.Binomialtrees
5.1 Motivation
Matching moments
5.2 Growing the tree
5.2.1 Implementing a tree
5.2.2 Vectorization
5.2.3 Binomial expansion
5.3 Early exerase
5.4 Dividends
5.5 The Greeks
Greeks from the tree
Part Two Simulation
6. Generatmg random numbers
6.1 Monte Carlo methods and sampling
6.1.1 How it allbegan
6.1.2 Financialapplications
6.2 Uniform random number generators
6.2.1 Congruential generators
6.2.2 Mersenne Twister
6.3 Nonuniform distributions
6.3.1 The inversion method
6.3.2 Acceptance-rejection method
6.4 Specialized methods for selected distributions
6.4.1 Normal distribution
6.4.2 Higher order moments and the Cornish-Fisher expansion
6.4.3 Further distributions
6.5 Sampling from a discrete set
6.5.1 Discrete uniform selection
6.5.2 Roulette wheel selection
6.5.3 Random permutations and shuffling
6.6 Sampling errors-and how to reduce them
6.6.1 The basic problem
6.6.2 Quasi-Monte Carlo
6.6.3 Stratified sampling
6.6.4 Variance reduction
6.7Drawing from empirical distributions
6.7.1 Data randomization
6.7.2 Bootstrap
6.8 Controlled experiments and experimental design
6.8.1 Replicability and ceteris paribus analysis
6.8.2 Available random number generators in Matlab
6.8.3 Uniform random numbers from Matlab''s rand function
6.8.4 Gaussian random numbers from Matlab''s randn function
6.8.5 Remedies
7.Modelingdependenaes
7.1 Transformation methods
7.1.1 Linear correlation
7.1.2 Rank correlation
7.2 Markov chains
7.2.1 Concepts
7.2.2 The Metropolis algorithm
7.3 Copula models
7.3.1 Concepts
7.3.2 Simulation using copulas
8. A gentle introduction to financial simulation
8.1 Setting the stage
8.2 Single-period simulations
8.2.1 Terminal asset prices
8.2.2 l-over-N portfolios
8.2.3 European options
8.2.4 VaR of a covered put portfolio
8.3 Simple price processes
8.4 Processes with memoryin thelevels of returns
8.4.1 Efficient versus adaptive markets
8.4.2 Moving averages
8.4.3 Autoregressive models
8.4.4 Autoregressive moving average (ARMA) models
8.4.5 Simulating ARMA models
8.4.6 Models withlong-term memory
8.5 Time-varying volatility
8.5.1 Theconcepts
8.5.2 Autocorrelated time-varying volatility
8.5.3 Simulating GARCH processes
8.5.4 Selected further autoregressive volatility models
8.6 Adaptive expectations and patternsin price processes
8.6.1 Price-earningsmodels
8.6.2 Models with learning
8.7Historical simulation
8.7.1 Backtesting
8.7.2 Bootstrap
8.8 Agent-based models and complexity
9. Financial simulation at work: some case studies
9.1Constant proportion portfolio insurance (CPPI)
9.1.1 Basicconcepts
9.1.2 Bootstrap
9.2 VaR estimation with Extreme Value Theory
9.2.1 Basicconcepts
9.2.2 Scaling the data
9.2.3 Using Extreme Value Theory
9.3 Option pricing
9.3.1 Modeling prices
9.3.2 Pricingmodels
9.3.3 Greeks
9.3.4 Quasi-Monte Carlo
Part Three Optimization

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2025 (香港)大書城有限公司 All Rights Reserved.