登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

『簡體書』环境生物技术:原理与应用(大学环境教育丛书(影印版))

書城自編碼: 2001650
分類: 簡體書→大陸圖書→教材研究生/本科/专科教材
作者: [美]里特曼
國際書號(ISBN): 9787302302582
出版社: 清华大学出版社
出版日期: 2012-11-01
版次: 1 印次: 1
頁數/字數: 754/
書度/開本: 大32开 釘裝: 平装

售價:NT$ 646

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
封建社会农民战争问题导论(光启文库)
《 封建社会农民战争问题导论(光启文库) 》

售價:NT$ 296.0
虚弱的反攻:开禧北伐
《 虚弱的反攻:开禧北伐 》

售價:NT$ 429.0
泰山:一种中国信仰专论(法国汉学经典译丛)
《 泰山:一种中国信仰专论(法国汉学经典译丛) 》

售價:NT$ 380.0
花外集斠箋
《 花外集斠箋 》

售價:NT$ 704.0
有兽焉.8
《 有兽焉.8 》

售價:NT$ 305.0
大学问·明清经济史讲稿
《 大学问·明清经济史讲稿 》

售價:NT$ 330.0
中国国际法年刊(2023)
《 中国国际法年刊(2023) 》

售價:NT$ 539.0
西班牙内战:秩序崩溃与激荡的世界格局:1936-1939
《 西班牙内战:秩序崩溃与激荡的世界格局:1936-1939 》

售價:NT$ 990.0

建議一齊購買:

+

NT$ 365
《 环境工程微生物学(第3版) 》
+

NT$ 846
《 环境工程导论(影印版)(第4版) 》
+

NT$ 663
《 环境科学与工程原理(翻译版) 》
+

NT$ 1121
《 污水生物处理——原理、设计与模拟(含光盘) 》
內容簡介:
《大学环境教育丛书·环境生物技术:原理与应用(影印版)》介绍了用于保护和改善环境的微生物过程的基本原理及其实际应用。书中不仅涉及了环境生物技术的传统应用,如活性污泥法和厌氧消化,还介绍了新兴的应用,如有害化合物的脱毒、生物修复、饮用水的生物过滤等。书中提供了大量的图、表,每章后列有习题,以帮助理解和掌握基本概念和原理,还给出了丰富的实例,以利于读者正确地分析、设计和解决实际环境问题。
《大学环境教育丛书·环境生物技术:原理与应用(影印版)》适合作为高等院校环境类专业的教材,也可供环境、生物等领域的科技人员参考。
目錄
Chapter 1 BASICS OF MICROBIOLOGY
1.1 The Cell
1.2 Taxonomy andPhylogeny
1.3 Prokaryotes
1.3.1 Bacteria
1.3.2 Archaea
1.4 Eukarya
1.4.1 Fungi
1.4.2 Algae
1.4.3 Protozoa
1.4.4 Other Multicellular Microorganisms
1.5 Viruses
1.6 Infectious Disease
1.7 Biochemistry
1.8 Enzymes
1.8.1 EnzymeReactivity
1.8.2 Regulating the Activity of Enzymes
1.9 EnergyCapture
1.9.1 Electron and Energy Carriers
1.9.2 Energy and Electronlnvestments
1.10 Metabolism
1.10.1 Catabolism
1.10.2 Anabolism
1.10.3 Metabolism and Trophic Groups
1.11 Genetics andlnformation Flow
1.12 DeoxyribonucleicAcid (DNA)
1.12.1 TheChromosome
1.12.2 Plasmids
1.12.3 DNAReplication
1.13 RibonucleicAcid (RNA)
1.13.1 Transcription
1.13.2 Messenger RNA (mRNA)
1.13.3 Transfer RNA (tRNA)
1.13.4 Translation and the Ribosomal RNA(rRNA)
1.13.5 Translation
1.13.6 Regulation
1.14 Phylogeny
1.14.1 The Basics of Phylogenetic Classification
1.15 MicrobialEcology
1.15.1 Selection
1.15.2 Exchange of Materials
1.15.3 Adaptation
1.16 Tools to Study MicrobialEcology
1.16.1 Traditional Enrichment Tools
1.16.2 MolecularTools
1.16.3 MultispeciesModeling
1.17 Bibliography
1.18 Problems
Chapter 2 STOICHIOMETRY AND BACTERIAL ENERGETICS
2.1 An Example Stoichiometric Equation
2.2 EmpiricalFormulas for Microbial Cells
2.3 Substrate Partitioning and Cellular Yield
2.4 Energy Reactions
2.5 OverallReactions for Biological Growth
2.5.1 Fermentation Reactions
2.6 Energetics and Bacterial Growth
2.6.1 Free Energy of the Energy Reaction
2.7 Yield Coefficient and Reaction Energetics
2.8 Oxidized Nitrogen Sources
2.9 Bibliography
2.10 Problems
Chapter 3 MICROBIAL KINETICS
3.1 BasicRateExpressions
3.2 ParameterValues
3.3 Basic Mass Balances
3.4 Mass Balances on Inert Biomass and Volatile Solids
3.5 SolubleMicrobiaIProducts
3.6 NutrientsandElectronAcceptors
3.7 InputActiveBiomass ''
3.8 Hydrolysis ofParticulate and Polymeric Substrates
3.9 Inhibition
3.10 OtherAlternateRate Expressions
3.11 Bibliography
3.12 Problems
Chapter 4 BIOFILM KINETICS
4.1 MicrobialAggregation
4.2 Why Biofilms?
4.3 Theldealized Biofilm
4.3.1 SubstratePhenomena
4.3.2 TheBiofilmltself
4.4 TheSteady-StateBiofilm
4.5 TheSteady-State-Biofilm Solution
4.6 EstimatingParameterValues
4.7 AverageBiofilm SRT
4.8 CompletelyMixedBiofilmReactor
4.9 Soluble Microbial Products and Inert Biomass
4.10 Trendsin CMBRPerformance
4.11 NormalizedSurfaceLoading
4.12 Nonsteady-StateBiofilms
4.13 Special-CaseBiofilm Solutions
4.13.1 DeepBiofilms
4.13.2 Zero-OrderKinetics
4.14 Bibliography
4.15 Problems
Chapter 5 REACTORS
5.1 ReactorTypes
5.1.1 Suspended-GrowthReactors
5.1.2 BiofilmReactors
5.1.3 ReactorArrangements
5.2 Mass Balances
5.3 A Batch Reactor
5.4 A Continuous-Flow Stirred-Tank Reactor with Effluent
Recycle
5.5 APlug-FlowReactor
5.6 A Plug-Flow Reactor with Effluent Recycle
5.7 Reactors with Recycle of Settled Cells
5.7.1 CSrIR with Settling and Cell Recycling
5.7.2 EvaluationofAssumptions
5.7.3 Plug-Flow Reactor with Settling and Cell Recycle
5.8 UsingAlternateRateModels
5.9 Linking Stoichiometric Equations to Mass Balance
Equations
5.10 Engineering Design ofReactors
5.11 Reactorsin Series
5.12 Bibliography
5.13 Problems
Chapter 6 THE ACTIVATED SLUDGE PROCESS
Chapter 7 LAGOONS
Chapter 8 AEROBIC BIOFILM PROCESSES
Chapter 9 NITRIFICATION
Chaptor 10 DENITRIFICATION
Chapter 11 PHOSPHORUS REMOVAL
Chapter 12 DRINKING-WATER TREATMENT
Chapter 13 ANAEROBIC TREATMENT BY METHANOGENESIS
Chapter 14 DETOXIFICATION OF HAZARDOUS CHEMICALS
Chapter 15 BIOREMEDIATION
Appondlx A FREE ENERGIES OF FORMATION FOR VARIOUS CHEMICAL SPECIES,
25°
Appondlx B NORMALIZED SURFACE-LOADING CURVE
內容試閱
Air sparging alters at least three aspects of fluidized bed
operation. First, the presence of the gas phase reduces the liquid
hold-up (8), which decreases the liquid detention time and
increases the water''s interstitial velocity. Second, these effects
of the gas phase modify how the solid carriers are expanded in
response to the upward water flow. Although the response is
complicated, bed aeration generally causes a decrease in the FBE
for the same QAcs. Chang and Rittmann (1994) and Yu and Rittman
(1997) discuss these interacting factors. Third, the input of the
energy from aeration increases the bed turbulence, which can result
in a significant increase in the biofilm detachment rate. Since
aerobic heterotrophic systems have high biomass yields and growth
potential (i.e., Smin iS very low), the added detachment rate is
not necessarily an impediment in terms of BOD removal and process
stability, although effluent suspended solids may be
increased.
Fluidized beds offer reduced volumes, due to their high specific
surface area. Liquid detention times can be as low as a few
minutes. The size advantage of flu- idized beds generally is
limited by the ability to transfer oxygen to the water and the
biofilm. Thus, surface loads for fluidized beds may be somewhat
lower than for the other biofilm systems. As a consequence,
volumetric loads probably cannot be increased in direct proportion
to the increase in specific surface area. However, the short liquid
detention times of fluidized beds are particularly advantageous for
aerobic treatment of low concentrations of contaminants, for which
the oxygen demand is relatively low.
One operating problem that arises in some situations is bed
stratification, which usually arises when the carrier particles are
not sufficiently uniform in size. The smaller particles accumulate
near the top and also experience a lower biofilm-detachment rate.
Over time, these smaller particles accumulate more biofilm than do
the larger particles, making them less dense, which increases their
degree of fluidization. The problem is that the continued expansion
of the stratified bed leads ultimately to entrainment of the
carrier particle''s in the effluent and recycle flows.Using a highly
uniform medium most effectively prevents bed stratification. Other
control measures include designing a conical section at the top of
the reactor to allow light particles to settle; installing a
mechanical shear device, such as a propeller mixer, to detach the
excess biofilm from the small particles; or withdrawing carriers
from the top of the bed for cleaning.
When the medium is uniform, the carrier particles do not
stratify, but instead circulate throughout the bed height. This
medium mixing can provide a perfor- mance advantage when the
substrate flux is in or near the low-load region and the effluent
recycle ratio is not large. Then, medium movement allows each
biofilm particle to spend some time near the column inlet-where the
substrate concentration is relatively high and biofilm growth
occurs-and some time near the column outlet-where the substrate
concentration is very low, but the already accumulated biofilm can
continue removing substrate. Movement of the biofilm particles
disconnects substrate utilization and biofilm accumulation at any
particular location. Therefore, biofilm grown at a concentration
well above Smin near the inlet can remove substrate to well below
Smm near the outlet (Rittmann, 1982). In this way, a
steady-state-biofilm process can sustain effluent concentrations
substantially below Snun, as long as the medium mixes, while the
substrate concentration changes across the reactor.
……

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.