|
內容簡介: |
Riemann几何是Gauss古典曲面论的自然推广,是现代微分几何的重要基础。
本书内容包括Riemann度量,Levi-Civita联络,曲率张量,测地线,指数映照,完备性,Jacobi场和共轭点,等距和全测地子流形,Cartan-Hadamard定理,空间形式,测地线的第一、第二变分公式及其应用(如Bonnet-Myers定理,Weinstein定理等),Morse形式与Morse指标定理,割迹与单射半径,比较定理,体积与体积比较定理等内容,涵盖了经典“整体黎曼几何”的基本内容。这些内容可供已经学过微分流形基础的学生学习。
本书可作为数学专业研究生教材,也可供高等学校数学系及物理系本科生,研究生及有关科研人员参考。
|
目錄:
|
1 引言
2 Riemann度量
3 Levi-Civita联络
4 曲率张量
5 测地线,指数映照,测地凸邻域
6 完备性
7 Jacobi场和共轭点
8 等距和全测地子流形
9 Cartan-Hadamard定理
10 空间形式
11 测地线的第二变分公式及其应用
12 Morse指标形式与Morse指标定理
13 割迹和单射半径
14 比较定理
15 体积和体积比较定理
附录
Ⅰ. 微分流形(微分流形的定义和例子,可微函数与可微映照,子流形,切空间、余切空间、映照的微分,Sard定理,单位分解,Frobenius定理)
Ⅱ. 外微分和积分(张量丛,外微分,外微分式的积分,Stokes公式)
索引
参考文献
|
|